A SIMULATION MODEL FOR STUDYING CLOUD APPLICATIONS THROUGH SOFTWARE ARCHITECTURE EVALUATION

- Ph.D. Thesis -
María Julia Blas

- Advisors -
Dr. Horacio Leone – Dr. Silvio Gonnet
Software Product Quality

... refers to the degree to which software products meet their stated requirements.

Quality attributes should be achieved using well-known architectural patterns.
The **objective** of the thesis was to formulate a discrete event simulation model that allows the estimation of predefined quality attributes over the architecture design (i.e. the architecture evaluation) of web-based applications.
Thesis Contributions
Abstraction Level
Thesis Contributions

Conceptualization Level

modeling and simulation formalism
discrete-event formalism

web-based applications
problem domain
Conceptualization Level

Thesis Contributions

Software Engineering

problem domain

web-based applications

discrete-event formalism

modeling and simulation formalism

M&S
Thesis Contributions

Composition Level

Software Engineering

goal
web-based quality attributes

structure
web-based software architecture

discrete-event formalism

modeling and simulation formalism

M&S
Thesis Contributions

Composition Level

1. **discrete-event formalism**
 - **goal**: web-based quality attributes
 - **structure**: web-based software architecture

Modeling and Simulation Formalism
RDEVS
Routed DEVS
Routing Problem Definition
Routing Problem Definition
A routing process is defined as "the part of a modeling scenario where the components need to interact among them by distinguishing the event sources and destinations in order to ensure their transference into the right model".
Discrete Event System Specification (DEVS)

Atomic Model
Describes a system as a sequence of deterministic transitions among states as well as how it reacts to external input events and how it generates output events.

Coupled Model
Describes a system as a network of DEVS components (that can be either atomic DEVS or coupled DEVS).
Routing Problem (DEVS Solution)
Routing Problem (DEVS Solution)
Routing Problem (DEVS Solution)
Routing Problem (DEVS Solution)
Routed DEVS
Routed Discrete Event System Specification (*RDEVS*)

The models use routing policies to authenticate senders/receivers prior executing their behavior with aim to provide an appropriate separation of concerns between the routing process description (i.e. structure and routing paths) and the behavior of components.
Routed DEVS
Routed Discrete Event System Specification (RDEVS)

The models use routing policies to authenticate senders/receivers prior executing their behavior with aim to provide an appropriate separation of concerns between the routing process description (i.e. structure and routing paths) and the behavior of components.

This allows using RDEVS formalism as a ‘layer’ above the DEVS formalism that provides routing functionality without requiring the user to ‘dip down’ to DEVS itself for any functions.
RDEVS Models

- **Essential Model**: Specifies a module designed to perform the behavior of some component.

- **Routing Model**: Entity that verifies the routing policy over the incoming message and, then, pass on the operative content to an essential model for processing.

- **Network Model**: Routing scenario that structures the overall routing process as a composition of routing models.
RDEVS Models

Essential Model
Specifications a module designed to perform the behavior of some component.

Routing Model
Entity that verifies the routing policy over the incoming message and, then, pass on the operative content to an essential model for processing.

Network Model
Routing scenario that structures the overall routing process as a composition of routing models.
RDEVS Models

Essential Model
Specifies a module designed to perform the behavior of some component.

Routing Model
Entity that verifies the routing policy over the incoming message and, then, pass on the operative content to an essential model for processing.

Network Model
Routing scenario that structures the overall routing process as a composition of routing models.
RDEVS Models

Essential Model
Specifies a module designed to perform the behavior of some component.

(Component) DOMAIN BEHAVIOR

Routing Model
Entity that verifies the routing policy over the incoming message and, then, pass on the operative content to an essential model for processing.

(Component → Node) ROUTING BEHAVIOR

Network Model
Routing scenario that structures the overall routing process as a composition of routing models.

(Process) STRUCTURE
RDEVS Models

Essential Model ❄️ Atomic Model

(Component) DOMAIN BEHAVIOR

Routing Model

(Component → Node) ROUTING BEHAVIOR

Network Model

(Process) STRUCTURE
RDEVS Models

Essential Model ↔ Atomic Model

(Component) DOMAIN BEHAVIOR

Routing Model

Essential Model

Routing Policy

(Component → Node) ROUTING BEHAVIOR

Network Model

(Process) STRUCTURE
RDEVS Routing Model

Formal Definition

where

\[\omega = (u, W, \delta_r) \equiv \text{routing policy}, \]

\[E = <X_E, S_E, Y_E, \delta_{int,E}, \delta_{ext,E}, \lambda_E, \tau_E> \equiv \text{RDEVS essential model embedded in R}, \]

\[M = <X_M, S_M, Y_M, \delta_{int,M}, \delta_{ext,M}, \lambda_M, \tau_M> \equiv \text{DEVS atomic model that describes the behavior of the node to be executed during the routing process simulation}. \]
where

$$\omega = (u, W, \delta_r) \equiv \text{routing policy},$$

$$E = \langle X_E, S_E, Y_E, \delta_{mt,E}, \delta_{ext,E}, \lambda_E, \tau_E \rangle \equiv \text{RDEVS essential model embedded in R},$$

$$M = \langle X_M, S_M, Y_M, \delta_{mt,M}, \delta_{ext,M}, \lambda_M, \tau_M \rangle \equiv \text{DEVS atomic model that describes the behavior of the node to be executed during the routing process simulation.}$$
where

\(\omega = (u, W, \delta_r) \equiv \text{routing policy}, \)

\(E = < X_E, S_E, Y_E, \delta_{E,E}, \delta_{E,ext}, \lambda_E, \tau_E > \equiv \text{RDEVs essential model embedded in } R. \)

\(M = < X_M, S_M, Y_M, \delta_{M,M}, \delta_{M,ext}, \lambda_M, \tau_M > \equiv \text{DEVS atomic model that describes the behavior of the node to be executed during the routing process simulation}. \)
$X_M = \{ (x, h, T_{IN}) \mid h \in N_0, T_{IN} = \{ t_1, t_2, \ldots, t_k \mid t_1, t_2, \ldots, t_k \in N_0 \} \}$

is the set of input events identified inside the routing process.

$Y_M = \{ (y, u, T_{OUT}) \mid u \in N_0, T_{OUT} = \{ t_1, t_2, \ldots, t_k \mid t_1, t_2, \ldots, t_k \in N_0 \} \}$

is the set of output events identified inside the routing process, with

$S_M = \quad \equiv$ set of sequential states,

$\delta_{int,M}: S_M \rightarrow S_M = \quad \equiv$ internal transition function,

$\delta_{ext,M}: Q_M \times X_M \rightarrow S_M \equiv$ external transition function, defined as

$$\delta_{ext,M}(s, e, x') = \begin{cases} s & \text{if } x' = (x, h, T) \\ s & \text{otherwise} \end{cases}$$

$u \in T_{IN} \land h \in W) \lor (h = 0 \land u \in T_{IN}) \lor (u = 0 \land W = \emptyset)$

$\lambda_M: S_M \rightarrow Y_M \cup \emptyset \equiv$ output function, defined as

$$\lambda_M(s) = \{ u, \delta_r(s) \}$$

$\tau_M: S_M \rightarrow R_{0,\infty}^+ \equiv$ time advance function.
RDEVS Models

Essential Model

Atomic Model

Routing Model

Routing Policy

Network Model

Routing Model

Routing Model
Closure Under Coupling

A system formalism is closed under coupling if the resultant of any network of systems specified in the formalism is itself a system in the formalism.

To prove that RDEVS formalism is closed under coupling, two new models were obtained:

- the routing model that is behavioral equivalent to the network model, and
- the essential model that is behavioral equivalent to the routing model.

The hierarchical construction stays within the formalism.
Routing Problem (RDEVS Solution)
Routing Problem \((\text{RDEVS Solution}) \)
Routing Problem (RDEVS Solution)
discrete-event formalism

1. modeling and simulation formalism
2. web-based quality attributes
 - goal
3. web-based software architecture
 - structure

Thesis Contributions
Composition Level
2. Web-based Applications

Quality Attributes
Quality Scheme for Web Applications
Instance of the QSO Ontology

A Quality Scheme was defined to study the set of software attributes commonly measured in web-based applications.

Web Quality Scheme
{ software attribute, software metric, quality property }

Quality Properties Evaluation
Following the software product quality model of ISO/IEC 25010.
Quality Scheme for Web Applications
Instance of the QSO Ontology

A Quality Scheme was defined to study the set of software attributes commonly measured in web-based applications.

Quality Measures
Data required to calculate the available set of metrics in a specific development phase.

Web Quality Scheme
{ software attribute, software metric, quality property }

An information extraction process was applied with aims to obtain the set of variables to be measured during the simulation.
Simulation Goals
Web Quality Scheme → Direct Metrics

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
<th>UNIT</th>
<th>WEB-SOFTWARE ATTRIBUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>Processing time for user requests.</td>
<td>time</td>
<td>Invocation time</td>
</tr>
<tr>
<td>TSIT</td>
<td>Total time used for processing a user request.</td>
<td>time</td>
<td>Service accuracy</td>
</tr>
<tr>
<td>TR</td>
<td>Number of requests processed by the application.</td>
<td>requests</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>Number of incorrect responses to requests.</td>
<td>requests</td>
<td></td>
</tr>
<tr>
<td>FT</td>
<td>Inactive time.</td>
<td>time</td>
<td>Robustness of service</td>
</tr>
<tr>
<td>TT</td>
<td>Operative time.</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>FNF</td>
<td>Number of faults that are not failures.</td>
<td>faults</td>
<td>Service stability</td>
</tr>
<tr>
<td>TF</td>
<td>Number of faults.</td>
<td>faults</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Number of failures solved.</td>
<td>failures</td>
<td></td>
</tr>
</tbody>
</table>
Thesis Contributions

Composition Level

1. Modeling and simulation formalism
 - discrete-event formalism
2. Goal
 - web-based quality attributes
3. Structure
 - web-based software architecture
3

Web-based Applications

Software Architecture
Quality attributes should be achieved using well-known architectural patterns.
Quality attributes should be achieved using well-known architectural patterns.

Web architectural patterns were studied with aim to identify the components commonly used in web architectures.

Fehling et al. (2014). Cloud computing patterns: fundamentals to design, build, and manage cloud applications.
Metamodel for Building Web Architecture Designs

- These components were classified in an **UML metamodel**.
- The **UML metamodel** was completed with **OCL constraints** to ensure the accuracy of web-based architectures instantiated using the patterns.

The metamodel was used as architectural language for the development of a **software modeling tool**.
The architect employs the graphical architectural elements to build the architectural design of the web-based software application as an instance of the metamodel.
discrete-event formalism

Thesis Contributions

Composition Level

1. modeling and simulation formalism
2. web-based quality attributes
3. web-based software architecture
4 Simulation Model
Web-based Software Architecture for Quality Estimation
Web Application Architecture

Example: Web-based Software Architecture Design
Web Application Architecture

Example: Architecture Design to RDEVS Essential Model

Components frequently used in web-based software.
Web Application Architecture
Example: Architecture Design to RDEVS Essential Model

Domain-specific components.
Web Application Architecture

Example: RDEVS Essential Model “Example”
The number of replicas deployed over the infrastructure must be fixed prior executing the simulation.
Web Application Architecture

Example: Architecture Deployment to RDEVS Network Model
Web Application Architecture

Example: RDEVS Network Model

Network model: Web-based software architecture

Routing model examples:
- LB
- MQ

Routing model data:
Simulation Model

Final Structure

Network model (RDEVS) obtained by performing a set of transformations over the architectural design.
Simulation Model
Final Structure

Coupled model (DEVS) that defines the web application conditions to be used for quality estimation.
A software framework based in Java was developed with aims to provide a software tool that helps to build and simulate RDEVS models (using DEVSJAVA).
5 Evaluation of the M&S Contribution...to the Software Engineering Field
Web-based Architectures

Two case study were studied using the simulation model obtained from the architectural design.

<table>
<thead>
<tr>
<th>Number of Replicas</th>
<th>Two Tiers</th>
<th>Three Tiers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Network model</td>
<td>Routing model</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Web-based Architectures

The simulation results obtained in both cases allow to validate the thesis contributions from the software engineering perspective.

Software architects do not need to be aware of discrete-event formalisms for using the simulation models for quality estimation.

The application of the RDEVS formalism as modeling specification of software architectures was successful.
Conclusions and Future Research
Contributions

To the Software Engineering Field…

- The simulation models obtained from the architecture design provide a new technique for quality evaluation in early stages of development.

To the M&S Field…

- The RDEVS formalism as a standard solution for building simulation models that structure routing processes.

The proposal disadvantages are given by the assumptions made at the beginning of the simulation modeling tasks.
Future Work

Quality evaluation of self-adaptive architectures using an improved version of the actual simulation models combined with other discrete-event approaches that take advantage of their dynamic structure.
María Julia Blas
mariajuliablas@santafe-conicet.gov.ar